Automatic detection of fast ripples.

نویسندگان

  • Gwénaël Birot
  • Amar Kachenoura
  • Laurent Albera
  • Christian Bénar
  • Fabrice Wendling
چکیده

OBJECTIVE We propose a new method for automatic detection of fast ripples (FRs) which have been identified as a potential biomarker of epileptogenic processes. METHODS This method is based on a two-stage procedure: (i) global detection of events of interest (EOIs, defined as transient signals accompanied with an energy increase in the frequency band of interest 250-600Hz) and (ii) local energy vs. frequency analysis of detected EOIs for classification as FRs, interictal epileptic spikes or artifacts. For this second stage, two variants were implemented based either on Fourier or wavelet transform. The method was evaluated on simulated and real depth-EEG signals (human, animal). The performance criterion was based on receiving operator characteristics. RESULTS The proposed detector showed high performance in terms of sensitivity and specificity. CONCLUSIONS As designed to specifically detect FRs, the method outperforms any method simply based on the detection of energy changes in high-pass filtered signals and avoids spurious detections caused by sharp transient events often present in raw signals. SIGNIFICANCE In most of epilepsy surgery units, huge data sets are generated during pre-surgical evaluation. We think that the proposed detection method can dramatically decrease the workload in assessing the presence of FRs in intracranial EEGs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection and visualisation of MEG ripple oscillations in epilepsy

High frequency oscillations (HFOs, 80-500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples (80-250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal us...

متن کامل

Automatic detection of fast ripples 1

Highlights 1 1) We propose a novel method for automatically detecting fast ripples (FRs, 250-600 Hz) 2 2) The signal energy in low and high frequency bands is used to classify EEG events as FRs, interictal 3 epileptic spikes or artifacts. 4 3) The sensitivity and the specificity of this method is high enough to avoid " false ripples " caused by 5 sharp transients. 6 7 8 9 Abstract 10 Objective:...

متن کامل

A Fast, Robust, Automatic Blink Detector

Introduction “Blink” is defined as closing and opening of the eyes in a small duration of time. In this study, we aimed to introduce a fast, robust, vision-based approach for blink detection. Materials and Methods This approach consists of two steps. In the first step, the subject’s face is localized every second and with the first blink, the system detects the eye’s location and creates an ope...

متن کامل

Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter ǫ ( > ∼ 0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10. Data from the Large Synoptic Survey Tele...

متن کامل

Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100-250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very di cult to distinguish which HFOs are caused by normal versus pathological brain ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 213 2  شماره 

صفحات  -

تاریخ انتشار 2013